(window.AmazonUIPageJS ? A: No. probabilistic models, learning, and efficient inference Temporal models. There ⦠Computer Vision: Models, Learning and Inference {Optical Flow Oren Freifeld and Ron Shapira-Weber Computer Science, Ben-Gurion University April 1, 2019 ©2011 Simon J.D. (typeof uet === 'function') && uet("x3") Reviewed in the United States on October 30, 2012. This developer code pattern provides a Jupyter Notebook that will take test images with known “ground-truth” categories and evaluate the inference results versus the truth. Make mean mlinear function of x (variance constant) 3. This modern treatment of computer vision focuses on learning and inference in probabilistic models as a unifying theme. identities, The #prodDetails .prodDetTable{table-layout:fixed;border-spacing:0;padding:0}#prodDetails .prodDetLabel{background-color:#F5F5F5;width:35%;color:#666;vertical-align:top}#prodDetails .prodDetSectionEntry{width:50%!important;white-space:normal;word-wrap:break-word}#prodDetails .prodDet-expander-header{float:right}#prodDetails .prodDet-summaryText-visible{display:none}#prodDetails .prodDet-heading-alignment{float:left}.uilm-section img{display:block;margin:0 auto;min-width:650px}#medslogo_header_web{padding-bottom:0;color:#C60;font-size:medium;font-family:verdana,arial,helvetica,sans-serif}.burj-body #medslogo_header_web{color:#333;font-weight:400;padding-bottom:0;font-size:21px;font-family:arial,verdana,helvetica,sans-serif}#mllStaticLearnMore{padding-left:14px}#mll-tab-divider{padding-top:30px}#medsLegalLogo_feature_div{margin-bottom:14px!important}#energyEfficiencyLabel{display:inline-block;width:50px;height:23px}.energyEfficiencyArrow{position:relative;width:36px;height:22px;margin-right:22px;color:#FFF;text-align:center;line-height:22px;font-size:15px}.energyEfficiencyArrow:after{content:"";position:absolute;left:100%;top:0;width:0;height:0;border-top:11px solid transparent;border-left-width:10px;border-left-style:solid;border-bottom:11px solid transparent}.energyEfficiencySymbol{position:relative;top:-2px}.energyEfficiencyTextPlacement{position:relative;left:2px}.technicalData .h3color,.technicalData font,.technicalData ul{color:#333!important}.technicalData b,.technicalData strong{font-weight:400!important}#dealprice_shippingmessage i.a-icon.a-icon-popover,#ourprice_shippingmessage i.a-icon.a-icon-popover,#saleprice_shippingmessage i.a-icon.a-icon-popover,.buyboxShippingLabel i.a-icon.a-icon-popover{display:none!important} title= {{Computer Vision: This modern treatment of computer vision focuses on learning and inference in probabilistic models as a unifying theme. A: Yes. }); .price-update-feature-ww{display:none}.price-update-row-ww{display:none;padding-bottom:10px;margin-bottom:0}.twister-plus-bottom-sheet-padding{padding-right:1.3rem;padding-left:1.3rem}.pinned-header-container{width:100%;display:block}.tp-pinned-header-sticky{position:fixed;top:0;left:0;width:100%}#tp-pinned-header{z-index:10000;display:none;border-width:0;border-radius:0;padding-top:0;max-height:60px}.tp-pinned-header-shadow-box{-moz-box-shadow:0 2px 5px 0 rgba(0,0,0,.2);-webkit-box-shadow:0 2px 5px 0 rgba(0,0,0,.2);box-shadow:0 2px 5px 0 rgba(0,0,0,.2)}.pinned-header-center-section{padding:17px 0 0 5px;margin-bottom:0;line-height:0}.pinned-header-center-section.multi-line{padding-top:9px}.pinned-header-price-section{width:100%}.pinned-header-secondary-text{width:100%}.pinned-header-button-section{padding:13px 13px}.tp-pinned-header-image-container{padding:9px 0 9px 5px}.pinned-header-button-section.non-english{padding-top:9px}#tp-pinned-header-additional-price-info{display:none}.tp-pinned-header-payment-term-number{margin-left:4px}.tp-pinned-header-payment-period{display:none;word-spacing:normal}.tp-pinned-header-prime-badge{display:inline-block}#twister-plus-card{padding:0}#twister-plus-card .twister-plus-header{padding:15px 15px 0 15px}#twister-plus-card .twister-plus-divider{padding-left:15px;padding-right:15px;margin-bottom:0!important} to machine learning, Generative Local practice in machine learning, Statistical This book is a breath of fresh air in the machine learning field. Reviewed in the United States on August 27, 2015. Please try again. Models Learning and Inference}}, It shows how to use training data to learn the relationships between the observed image data and the aspects of the world that we wish to estimate, such as the 3D structure or the object class, and how to exploit these relationships to make new inferences about the … AmazonUIPageJS : P).load.js('https://images-na.ssl-images-amazon.com/images/I/11GgIcHABOL.js?AUIClients/DetailPageClimatePledgeFriendlyAssets&3MBUHn7h#287015-T1'); ©2011 Simon J.D. publisher = {{Cambridge Computer Vision: Models, Learning and Inference {Markov Random Fields, Part 4 Oren Freifeld and Ron Shapira-Weber Computer Science, Ben-Gurion University .amazon_yum_mobile #displaySelector_burj_feature_div .primeNowYum,.amazon_yum_mobile #displaySelector_feature_div .primeNowYum,.amazon_yum_pantry_mobile #displaySelector_burj_feature_div .primeNowYum,.amazon_yum_pantry_mobile #displaySelector_feature_div .primeNowYum{margin-top:2.1rem}.amazon_yum_mobile #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdText ul,.amazon_yum_mobile #displaySelector_feature_div #visual-rich-product-description .visualRpdText ul,.amazon_yum_pantry_mobile #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdText ul,.amazon_yum_pantry_mobile #displaySelector_feature_div #visual-rich-product-description .visualRpdText ul{color:#111!important}.amazon_yum_mobile #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdDivider,.amazon_yum_mobile #displaySelector_feature_div #visual-rich-product-description .visualRpdDivider,.amazon_yum_pantry_mobile #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdDivider,.amazon_yum_pantry_mobile #displaySelector_feature_div #visual-rich-product-description .visualRpdDivider{border-color:#555}.amazon_yum_mobile #displaySelector_burj_feature_div #visual-rich-product-description .icon-description,.amazon_yum_mobile #displaySelector_feature_div #visual-rich-product-description .icon-description,.amazon_yum_pantry_mobile #displaySelector_burj_feature_div #visual-rich-product-description .icon-description,.amazon_yum_pantry_mobile #displaySelector_feature_div #visual-rich-product-description .icon-description{height:4rem;width:3.7rem!important;background-image:url(https://m.media-amazon.com/images/G/01/AUIClients/PrivateLabelMobileAssets-yumImages-dd0afa951c938e964b12ce982cd0629b36dc3276._V2_.png);background-size:7rem 3.7rem;background-position:0rem 0rem;background-repeat:no-repeat}.amazon_yum_mobile #displaySelector_burj_feature_div #visual-rich-product-description .icon-benefits,.amazon_yum_mobile #displaySelector_feature_div #visual-rich-product-description .icon-benefits,.amazon_yum_pantry_mobile #displaySelector_burj_feature_div #visual-rich-product-description .icon-benefits,.amazon_yum_pantry_mobile #displaySelector_feature_div #visual-rich-product-description .icon-benefits{height:4rem;width:3.7rem!important;background-image:url(https://m.media-amazon.com/images/G/01/AUIClients/PrivateLabelMobileAssets-yumImages-dd0afa951c938e964b12ce982cd0629b36dc3276._V2_.png);background-size:7rem 3.7rem;background-position:-3.5rem 0rem;background-repeat:no-repeat}.amazon_yum_mobile #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner,.amazon_yum_mobile #displaySelector_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner,.amazon_yum_pantry_mobile #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner,.amazon_yum_pantry_mobile #displaySelector_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner{padding-left:0rem!important}.amazon_yum_mobile #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner .a-col-right,.amazon_yum_mobile #displaySelector_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner .a-col-right,.amazon_yum_pantry_mobile #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner .a-col-right,.amazon_yum_pantry_mobile #displaySelector_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner .a-col-right{padding-left:0rem!important}.amazon_yum_mobile #displaySelector_burj_feature_div #visual-rpd-product-details,.amazon_yum_mobile #displaySelector_feature_div #visual-rpd-product-details,.amazon_yum_pantry_mobile #displaySelector_burj_feature_div #visual-rpd-product-details,.amazon_yum_pantry_mobile #displaySelector_feature_div #visual-rpd-product-details{display:block;margin-bottom:10px}.amazon_elements_mobile #displaySelector_burj_feature_div #rpd-benefits-suggestedUse-awards-box,.amazon_elements_mobile #displaySelector_feature_div #rpd-benefits-suggestedUse-awards-box{display:none}.amazon_elements_mobile #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdText ul,.amazon_elements_mobile #displaySelector_feature_div #visual-rich-product-description .visualRpdText ul{color:#111!important}.amazon_elements_mobile #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdDivider,.amazon_elements_mobile #displaySelector_feature_div #visual-rich-product-description .visualRpdDivider{border-color:#555}.amazon_elements_mobile #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner,.amazon_elements_mobile #displaySelector_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner{padding-left:0rem!important}.amazon_elements_mobile #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner .a-col-right,.amazon_elements_mobile #displaySelector_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner .a-col-right{padding-left:0rem!important}.amazon_elements_mobile #displaySelector_burj_feature_div #visual-rpd-product-details,.amazon_elements_mobile #displaySelector_feature_div #visual-rpd-product-details{display:none}.amazon_elements_mobile #bulletPointList_feature_div>h2{display:none}.amazon_yum_pantry_tablet #displaySelector_burj_feature_div .primeNowYum,.amazon_yum_pantry_tablet #displaySelector_feature_div .primeNowYum,.amazon_yum_tablet #displaySelector_burj_feature_div .primeNowYum,.amazon_yum_tablet #displaySelector_feature_div .primeNowYum{margin-top:2.1rem}.amazon_yum_pantry_tablet #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdText ul,.amazon_yum_pantry_tablet #displaySelector_feature_div #visual-rich-product-description .visualRpdText ul,.amazon_yum_tablet #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdText ul,.amazon_yum_tablet #displaySelector_feature_div #visual-rich-product-description .visualRpdText ul{color:#111!important}.amazon_yum_pantry_tablet #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdDivider,.amazon_yum_pantry_tablet #displaySelector_feature_div #visual-rich-product-description .visualRpdDivider,.amazon_yum_tablet #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdDivider,.amazon_yum_tablet #displaySelector_feature_div #visual-rich-product-description .visualRpdDivider{border-color:#555}.amazon_yum_pantry_tablet #displaySelector_burj_feature_div #visual-rich-product-description .icon-description,.amazon_yum_pantry_tablet #displaySelector_feature_div #visual-rich-product-description .icon-description,.amazon_yum_tablet #displaySelector_burj_feature_div #visual-rich-product-description .icon-description,.amazon_yum_tablet #displaySelector_feature_div #visual-rich-product-description .icon-description{height:4rem;width:3.7rem!important;background-image:url(https://m.media-amazon.com/images/G/01/AUIClients/PrivateLabelMobileAssets-yumImages-dd0afa951c938e964b12ce982cd0629b36dc3276._V2_.png);background-size:7rem 3.7rem;background-position:0rem 0rem;background-repeat:no-repeat}.amazon_yum_pantry_tablet #displaySelector_burj_feature_div #visual-rich-product-description .icon-benefits,.amazon_yum_pantry_tablet #displaySelector_feature_div #visual-rich-product-description .icon-benefits,.amazon_yum_tablet #displaySelector_burj_feature_div #visual-rich-product-description .icon-benefits,.amazon_yum_tablet #displaySelector_feature_div #visual-rich-product-description .icon-benefits{height:4rem;width:3.7rem!important;background-image:url(https://m.media-amazon.com/images/G/01/AUIClients/PrivateLabelMobileAssets-yumImages-dd0afa951c938e964b12ce982cd0629b36dc3276._V2_.png);background-size:7rem 3.7rem;background-position:-3.5rem 0rem;background-repeat:no-repeat}.amazon_yum_pantry_tablet #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner,.amazon_yum_pantry_tablet #displaySelector_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner,.amazon_yum_tablet #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner,.amazon_yum_tablet #displaySelector_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner{padding-left:0rem!important}.amazon_yum_pantry_tablet #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner .a-col-right,.amazon_yum_pantry_tablet #displaySelector_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner .a-col-right,.amazon_yum_tablet #displaySelector_burj_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner .a-col-right,.amazon_yum_tablet #displaySelector_feature_div #visual-rich-product-description .visualRpdBlock-suggesteduse .a-fixed-left-grid-inner .a-col-right{padding-left:0rem!important}.amazon_yum_pantry_tablet #displaySelector_burj_feature_div #visual-rpd-product-details,.amazon_yum_pantry_tablet #displaySelector_feature_div #visual-rpd-product-details,.amazon_yum_tablet #displaySelector_burj_feature_div #visual-rpd-product-details,.amazon_yum_tablet #displaySelector_feature_div #visual-rpd-product-details{display:block;margin-bottom:10px}.amazon_yum_mobile #tellAFriendBox_feature_div #email #tell-a-friend img,.amazon_yum_mobile #tellAFriendBox_feature_div #facebook #tell-a-friend img,.amazon_yum_mobile #tellAFriendBox_feature_div #twitter #tell-a-friend img,.amazon_yum_pantry_mobile #tellAFriendBox_feature_div #email #tell-a-friend img,.amazon_yum_pantry_mobile #tellAFriendBox_feature_div #facebook #tell-a-friend img,.amazon_yum_pantry_mobile #tellAFriendBox_feature_div #twitter #tell-a-friend img{-moz-box-sizing:border-box;box-sizing:border-box;background-image:url(https://m.media-amazon.com/images/G/01/AUIClients/PrivateLabelMobileAssets-yumSocialShareIcons-460ac26ce78891e67f18a3a3715f93fde91c489e._V2_.png);background-size:80px 25px}.amazon_yum_mobile #tellAFriendBox_feature_div #email #tell-a-friend img,.amazon_yum_pantry_mobile #tellAFriendBox_feature_div #email #tell-a-friend img{background-position:0 0;padding-left:30px;width:30px;height:25px}.amazon_yum_mobile #tellAFriendBox_feature_div #facebook #tell-a-friend img,.amazon_yum_pantry_mobile #tellAFriendBox_feature_div #facebook #tell-a-friend img{background-position:-30px 0;padding-left:25px;width:25px;height:25px}.amazon_yum_mobile #tellAFriendBox_feature_div #twitter #tell-a-friend img,.amazon_yum_pantry_mobile #tellAFriendBox_feature_div #twitter #tell-a-friend img{background-position:-55px 0;padding-left:25px;width:25px;height:25px}.crossSellImageSize{height:96px;width:96px;background-size:auto 96px!important;opacity:1;-moz-transition:opacity .2s ease-in-out;-webkit-transition:opacity .2s ease-in-out;-ms-transition:opacity .2s ease-in-out;-o-transition:opacity .2s ease-in-out;transition:opacity .2s ease-in-out}#crossSellRecommendations .crossSellUseWith h5{font-style:italic}.crossSellCheckBox{margin-left:auto;margin-right:auto;width:50px}.crossSellProductTitle{overflow:hidden;height:2.6em;overflow:hidden;text-overflow:ellipsis;display:-webkit-box;-webkit-line-clamp:2;-webkit-box-orient:vertical}.crossSellCustomerReview{height:1.3em}.crossSellPrimeExclusiveHeader{color:#26586C}.crossSellImageDisabled{opacity:.5}.amazon_yum_mobile #aplus_feature_div .aplus-v2>h3:first-child,.amazon_yum_pantry_mobile #aplus_feature_div .aplus-v2>h3:first-child{display:none}.amazon_elements_mobile #dpx-anywhere-bullet-point-list_feature_div #bulletPointList_feature_div>h2{display:none} Much better and more concise than Hartley and Zisserman and much more logically structures than R. Szelinski ones. The "pure" machine vision part of the book is a little more standard, but equally "fluidly" presented. Prince. It shows how to use training data to learn the relationships between the observed image data and the aspects of the world that we wish to estimate, such as the 3D structure or the object class, and how to exploit these relationships to make new inferences about the world from new … .askPage .askWrapText{word-wrap:break-word}.askFullWidthCardDeck{margin-left:-1.4rem;margin-right:-1.4rem}.askHidden{display:none}a.ask-btf-search-link span{position:relative;top:-3px}.askLanguageFilterLabel{padding-right:6px}.a-icon-search.ask-btf-search-button-icon,.a-icon-search.ask-swdp-search-button-icon{vertical-align:middle}.askSearchInputIngress{position:relative}.askPage .a-link-normal{display:inline-block}.askPage .a-link-normal.askHidden{display:none}.askFormLabel{padding-left:0!important}.askFormLabel label.a-native-dropdown{direction:ltr}.askTranslationFooterSeparator,.askTranslationFooterText{padding-right:5px}.askBtfSearchResultsContainer .askBtfSearchResults .matches,.askDPSearchPrimaryViewContent .matches,.askDPSearchSecondaryViewContent .askSearchResults .matches,.askLiveSearchResults .matches,.askSearchResultsContainer .askSearchResults .matches{background-color:#ffebb7}.askLiveSearchFailureMessage,.askLiveSearchLoading,.askLiveSearchSuccessfulMessage{display:none}.askExpanderContainer .askLongText{display:none}.askExpanderContainer .askShortText{display:inline}.askExpanderContainer .askSeeLess,.askExpanderContainer .askSeeMore{text-decoration:none}.askExpanderContainer.askExpanderExpanded .askLongText{display:inline}.askExpanderContainer.askExpanderExpanded .askShortText{display:none}.askAuthorBadge{border-top:1px dashed #A9A9A9;border-bottom:1px dashed #A9A9A9;font-size:9px;text-transform:uppercase;color:#004B91;letter-spacing:.5px;padding:2px;font-weight:700;white-space:nowrap}a.askAuthorBadge:link{text-decoration:none}.askNewAuthorBadge{padding-left:2px;color:purple;white-space:nowrap}a.askNewAuthorBadge:active,a.askNewAuthorBadge:link,a.askNewAuthorBadge:visited{text-decoration:none;color:purple}.askEnthusiastBadge{color:#538000}.askAnswerMoreQuestionsPostAnswerFormSection{position:relative}.askAnswerMoreQuestionsConfirmation{display:none;left:50%;top:50%;max-width:50%;position:absolute;color:#FFF;padding:10px;border-color:#6C7778;background-color:#6C7778;border-style:solid;border-radius:6px;z-index:2;transform:translate(-50%,-50%)}.ask-profile-avatar-small .a-profile-avatar-wrapper{padding-right:6px!important;width:30px!important}.ask-profile-avatar-small .a-profile-avatar-wrapper .a-profile-avatar{height:24px!important;width:24px!important}.ask-profile-avatar-large .a-profile-avatar-wrapper{padding-right:6px!important;width:36px!important}.ask-profile-avatar-large .a-profile-avatar-wrapper .a-profile-avatar{height:30px!important;width:30px!important}.ask-profile-avatar-none .a-profile-avatar-wrapper{display:none}.ask-profile-avatar-none[data-a-type=enthusiast] .a-profile-avatar:after{display:none!important}.brandMessagingContainer{display:inline-flex;align-items:center}.brandMessagingContainer .brandMessagingIngressText{padding-left:8px}.brandMessagingIngressLink{padding-left:30px}.brandMessagingButtonOnlyWithQuestion{margin-left:175px}.brandMessagingButtonWithSeeMoreQuestion{margin-left:30px;vertical-align:middle}.askUploadVideoBox{height:100px}.askUploadVideoBox.askPending{background-color:#fafafa;border:.1rem dashed #a6a6a6;border-radius:.3rem}.askUploadVideoBox.askChosen{border:none}.askGetMediaStagingForm{display:none}.askUploadVideoButton{height:98px;text-align:center}.askUploadVideoSpinner{display:none;height:98px;text-align:center}.askVideoThumbnail>video::-webkit-media-controls,.askVideoThumbnail>video::-webkit-media-controls-panel,.askVideoThumbnail>video::-webkit-media-controls-panel-container,.askVideoThumbnail>video::-webkit-media-controls-start-playback-button{-webkit-appearance:none;display:none!important}.askUploadVideoProgress{border:none;position:relative;display:inline-block;margin:5px}.askUploadVideoProgress .askMediaThumbnail{top:-1px;width:90px;height:90px;position:relative;overflow:hidden}.askUploadVideoProgress .askMediaThumbnailOverlay{position:absolute;z-index:1;width:100%;height:100%;background-color:rgba(0,0,0,.3)}.askUploadVideoProgress .askVideoThumbnail{position:absolute}.askUploadVideoProgress .askTimeHHMMSSString,.askUploadVideoProgress .askTimeMMSSString{color:#fff;position:absolute;bottom:2px;right:6px;z-index:1}.askUploadVideoProgress .askUploadProgressSection{min-height:54px}.askUploadVideoProgress .askUploadProgress{min-height:15px}.askUploadVideoProgress .askUploadProgressTime{min-height:20px}.askUploadVideoProgress .askUploadProgressBar{box-shadow:none;border-radius:0;height:6px}.askUploadVideoProgress .askUploadProgressBarMeter{background-color:#3bbdac;background:-webkit-linear-gradient(top,#35ab9b,#3bbdac);background:linear-gradient(to bottom,#35ab9b,#3bbdac);background:#3bbdac}.askMobileAllAnswersPage .askMobileFailedToFetchMoreAnswers{display:none;text-align:center}.askMobileAllAnswersPage .answersLoadingSpinner,.askMobileAllAnswersPage .postAnswerLoadingSpinner{width:16px;height:16px;margin:10px auto 0 auto;display:none}.askCommentsSeparator{color:#767676;padding-left:5px;padding-right:5px}.askAnswerActionStatusIcon{margin-right:3px}.askDownvoteAnswerButton,.askUpvoteAnswerButton{font-size:1px;text-indent:-9999em;border:none;width:20px;height:20px;background-size:18px;background-repeat:no-repeat;background-color:#fff;background-position:center}.askAnswerVoteForm{margin-left:12px}.askDownvoteAnswerButton,.askUpvoteAnswerButton{margin-right:2px}.askDownvoteAnswerButton{transform:scale(-1,-1);position:relative;top:3px}.askReportAnswerButton{border:0;background-size:18px;background-color:#fff;padding-bottom:0;padding-left:15px}.mobileQuestionAndAnswerAndComment{margin-bottom:10px}.askMobileUpperFunnelAllAnswersPageProductCard{margin-bottom:1px;position:relative;padding-top:0;padding-bottom:0}.askMobileUpperFunnelAllAnswersPageContent{background-color:#fff;padding:1px 14px 1px 14px}.askMobileUpperFunnelAllAnswersPageCard{padding:0}.askMobileUpperFunnelAllAnswersPage .askMobileFailedToFetchMoreAnswers{display:none;text-align:center}.askMobileAllAnswersPage .askMobileUpperFunnelAllAnswersPage .postAnswerLoadingSpinner,.askMobileUpperFunnelAllAnswersPage .answersLoadingSpinner,.askMobileUpperFunnelAllAnswersPage .askMobileAllAnswersPage .postAnswerLoadingSpinner{width:16px;height:16px;margin:10px auto 0 auto;display:none}.askProductBoxContentImageMask{position:absolute;top:0;right:0;bottom:0;left:0;margin:0;background-color:rgba(0,0,0,.03);z-index:999}.askProductBoxContentTop{margin-top:0}.askProductBoxContentBorder{border-bottom:4px solid #D5DBDB}.askVoteUpperFunnelAnswerNoForm .a-button .a-button-inner,.askVoteUpperFunnelAnswerYesForm .a-button .a-button-inner{background:#fff}.askMobileAllQuestionsPage .askMobileFailedToFetchMoreQuestions{display:none;text-align:center}.askMobileAllQuestionsPage .questionsLoadingSpinner{width:16px;height:16px;margin:10px auto 0 auto;display:none}.askMobileAllQuestionsPage .askFullScreenWidth,.askMobileDetailPageWidget .askFullScreenWidth{position:relative;width:100vw;left:calc(-50vw + 50%)}.askPage .askQuestionText{font-size:18px}.askPostQuestionLoadingSpinner{width:16px;height:16px;margin:14px auto 0 auto;display:none}.askError{display:none}.askError.askMobilePostQuestionError{display:block}.askMobilePostQuestionButtonContainer{display:none;text-align:center}#askQuestionTextDisabledInputWrapper{display:none}#askSubmitQuestion{display:inline-block;margin-left:5px;vertical-align:inherit}.askMobilePostQuestionPromptAfter{display:none}.askAriaLabel{display:block;position:absolute;z-index:-1;left:-99999px;top:auto;height:1px;width:1px;overflow:hidden}@media (max-width:600px){#askSubmitQuestion{float:right;margin-bottom:10px}.askMobilePostQuestionPromptBefore{display:none}.askMobilePostQuestionPromptAfter{display:inline}}.askDeleteFormContainer,.askEditFormContainer{display:none}.questionPostResponseContainer{text-align:left}.askInlineError{display:none;margin-top:5px}.editQuestionTextInput{margin-left:0}.askPostQuestionConfirmText a:link{text-decoration:none}.inlineQuestionContent{word-break:break-word}.askLiveSearchResults .askMobileLiveSearchResultHeader,.askLiveSearchResults .askMobileLiveSearchResultHeader:focus{background:0 0}.askMobileLiveSearchResultHeaderTextCollapsed{white-space:nowrap;overflow:hidden;text-overflow:ellipsis;display:block}.askMobileLiveSearchResultHeaderTextExpanded{display:none}.askLiveSearchResults .askMobileLiveSearchResultContent{padding-top:0;border-top:none}.askWarning{color:#900}.askLiveSearchResults .a-link-section-expander .a-icon-section-collapse,.askLiveSearchResults .a-link-section-expander .a-icon-section-expand{top:2.2rem}.askSearchInputIngress input{padding-right:35px}.askDisplayClearSearch{z-index:1;position:absolute;right:15px;top:20px;cursor:pointer;width:12px;height:12px}.askDisplayClearSearch:before{position:absolute;top:-18px;bottom:-13px;left:-13px;right:-10px;content:''}.askCard{background:#fff}.askCard,.askSearchResultsHeaderContainerWrapper{border-bottom:4px solid #e7e7e7}.askCardHeading{padding-bottom:0}.askBtfPrimaryView .askCard{border-bottom:2px solid #e7e7e7}.askBtfPrimaryView .askCard:last-child{border-bottom:0}.askBtfPrimaryView .askCard .askBlockLink{display:block;text-align:center}.askBtfPrimaryView .askCard.askCard__noFooter .askCard_footer{display:none}.askDPSearchFailureMessage,.askDPSearchQuestionErrorContainer .askError,.askDPSearchSearchIndicator,.askPostQuestionForm,.askPostQuestionSpinner{display:none}.askDPSearchSecondaryViewContent{width:100%;word-wrap:break-word}.askDPSearchSecondaryViewContent .askCard_footer{text-align:center}.askDPSearchSecondaryViewHeader{position:fixed;top:0;width:100%;background:#fff;z-index:2}.askSearchResultsHeaderContainerWrapper{overflow-x:scroll;display:none}.askSearchResultsHeaderContainer{display:inline-block;white-space:nowrap}.askSearchResultsHeader{display:inline-block;min-width:140px;text-align:center;white-space:nowrap;padding-bottom:10px;padding-top:10px}.askSearchResultsHeaderActive{font-weight:700;color:#00a4b4}.askSearchResultsHeaderScrollbar.swiper-scrollbar{background:0 0}.askSearchResultsHeaderScrollbar .swiper-scrollbar-drag{background:#00a4b4;height:.2rem}.askSearchResultsHeaderContainerWrapper::-webkit-scrollbar{display:none}.askFollowupQuestion{display:inline-block;max-width:100%;padding:10px 14px;margin:0 10px 5px 0;background-color:#EBF8FA;border-bottom:solid 1px #969696;color:#002F36}.ask-swdp-search-button{margin-left:.5rem;margin-bottom:.5rem}.askAnswerFooterName{padding-right:5px;float:left}.askAnswerFooterDate{white-space:nowrap}.askAnswerFooterSeparator{color:#555;padding-right:5px}.askAnswerMoreQuestionsBottomSheet{padding:15px 10px 0 15px;position:relative}.askAnswerMoreQuestionsPostAnswerSpinner{display:none;left:50%;top:50%;position:absolute;z-index:2;margin-left:-1.6rem;margin-top:-1.6rem;transform:translate(-50%,-50%)}.answerMoreQuestionMobileCard{overflow-y:auto;height:280px}.answerMoreQuestionInvitationMobileCard{overflow-y:auto;height:250px}.answerMoreQuestionsAnswerConfirmMobileCard{height:350px;overflow-y:auto}.vjs-user-inactive.vjs-playing .askVideoOverlayWrapper{display:block;visibility:hidden;opacity:0;-webkit-transition:visibility 1.5s,opacity 1.5s;-moz-transition:visibility 1.5s,opacity 1.5s;-ms-transition:visibility 1.5s,opacity 1.5s;-o-transition:visibility 1.5s,opacity 1.5s;transition:visibility 1.5s,opacity 1.5s}.askVideoOverlayWrapper{font-family:"Amazon Ember",Arial,sans-serif;display:none;height:100%;width:100%}.askVideoOverlayContent{height:100%;width:100%;padding:16px;flex-flow:column;display:flex}.askVideoOverlayContentExpanded{z-index:2;position:absolute}.askVideoOverlayCaret{position:absolute;width:100%;bottom:0;text-align:center;z-index:3;filter:invert(100%)}.askVideoOverlayTopDownGradient{pointer-events:none;position:absolute;z-index:0;height:100%;background:linear-gradient(180deg,rgba(0,0,0,.75) 0,rgba(0,0,0,.75) 20%,rgba(255,255,255,0) 30%,rgba(255,255,255,0) 100%)}.askVideoOverlayBottomUpGradient{pointer-events:none;position:absolute;z-index:3;height:100%;background:linear-gradient(0deg,rgba(0,0,0,.75) 0,rgba(0,0,0,.75) 10%,rgba(255,255,255,0) 30%,rgba(255,255,255,0) 100%)}.askVideoOverlayWholeMask{position:absolute;z-index:2;width:100%;height:100%;background-color:rgba(0,0,0,.7)}.askVideoOverlayBottomExpanded{height:85px;width:100%;position:absolute;bottom:0;z-index:3}.askVideoOverlayBadge{color:#979797;font-weight:700;font-size:13px}.askVideoOverlayExpanded{display:none}.askVideoOverlayCollapsed>.askVideoOverlayAnsweredOn{display:none}.askVideoOverlayAnswerAndCaretRow{flex:1 1 auto;overflow:hidden}.askVideoOverlayAnswerAndCaretRow>div{display:flex;max-height:100%}.askVideoOverlayAnswerAndCaretRow>div>div{overflow:scroll}.askVideoOverlayFlexedColumn{height:100%;display:flex;flex-flow:column}.askVideoOverlayFlexedRow{flex:1 1 auto;overflow:hidden}.askVideoOverlayFlexedRow>div{height:100%}.askSearchPageContent{width:100%;word-wrap:break-word}.askSearchPageHeader{position:fixed;top:0;width:100%;background:#fff;z-index:2}.askSearchFailureMessage,.askSearchIndicator{display:none}.askSearchPageHeader .askSubHeader{left:0;top:0}.a-button.ask-btf-search-button{margin-left:.5rem}.askLanguageFilterButtonList{text-align:left}.askUploadVideoProgress .askVideoThumbnailDurationOverlay{position:absolute;bottom:0;z-index:1;width:100%;height:2.1rem;background-color:rgba(0,0,0,.4)}.askUploadVideoProgress .askUploadCloseButton{position:absolute;top:4.5px;right:4.5px;box-shadow:none;width:23px;height:23px;border-radius:2rem;z-index:1;cursor:pointer}.askUploadVideoProgress .askUploadCloseButtonIcon{margin-top:5px}.askVideoThumbnailContainer .askVideoThumbnailImage{position:relative;border-radius:8px}.askVideoThumbnailContainer .askVideoThumbnailImage .askVideoThumbnailOverlay{position:absolute;bottom:16px;left:16px;z-index:1}.askVideoThumbnailContainer .askVideoThumbnailImage .askThumbnailVideoLoadSpinner{position:absolute;top:50%;left:50%;transform:translate(-50%,-50%);z-index:99}.askVideoThumbnailContainer .askVideoThumbnailImage .askVideoThumbnailErrorOverlay{border-radius:8px;position:absolute;width:100%;height:100%;background-color:rgba(0,0,0,.8);z-index:2;text-align:center}.askVideoThumbnailContainer .askVideoThumbnailImage .askVideoThumbnailErrorOverlay .askVideoThumbnailErrorOverlayContent{position:absolute;top:50%;left:50%;transform:translate(-50%,-50%);color:#fff;width:80%}.askVideoThumbnailContainer .askVideoThumbnailDuration{color:#fff;vertical-align:top}
2020 computer vision: models, learning, and inference